
Conflict-Aware Event-Participant Arrangement
Jieying She, Yongxin Tong, Lei Chen, Caleb Chen Cao

Department of Computer Science and Engineering
The Hong Kong University of Science and Technology

Clear Water Bay, Kowloon, Hong Kong SAR, PR China
{jshe,yxtong,leichen,caochen}@cse.ust.hk

Abstract—With the rapid development of Web 2.0 and Online
To Offline (O2O) marketing model, various online event-based
social networks (EBSNs), such as Meetup and Whova, are getting
popular. An important task of EBSNs is to facilitate the most
satisfactory event-participant arrangement for both sides, i.e.
events enroll more participants and participants are arranged
with personally interesting events. Existing approaches usually
focus on the arrangement of each single event to a set of potential
users, and ignore the conflicts between different events, which
leads to infeasible or redundant arrangements. In this paper, to
address the shortcomings of existing approaches, we first identify
a more general and useful event-participant arrangement prob-
lem, called Global Event-participant Arrangement with Conflict
and Capacity (GEACC) problem, focusing on the conflicts of
different events and making event-participant arrangements in
a global view. Though it is useful, unfortunately, we find that
the GEACC problem is NP-hard due to the conflict constraints
among events. Thus, we design two approximation algorithms
with provable approximation ratios and an exact algorithm with
pruning technique to address this problem. Finally, we verify
the effectiveness and efficiency of the proposed methods through
extensive experiments on real and synthetic datasets.

I. INTRODUCTION

The prevalence of Web 2.0 and Online To Offline (O2O)
marketing model has led to the boom of various online event-
based social networks (EBSNs)[1]. For example, Groupon1

collects group purchase events and recommends these group
discounts to users. Taking another example, Meetup2 receives
information on recruitment of attendees in group events, such
as gatherings, sports activities, etc., and sends the event in-
formation to users. Such EBSNs facilitate organizing social
events and ease the recruitment of group activity participants
compared with that in the Web 1.0 age. Note that “participant”
and “user” stand for the same meaning and they are used
interchangeably in this paper.

Although existing EBSNs can improve effectiveness and
efficiency of organizing social activities, most of them only
provide a public/open event information sharing platform[1],
where strategic organization and global event-participant ar-
rangement are absent. Imagine the following scenario. Bob is a
sport enthusiast and usually attends sports activities organized
on Meetup. In the evening of Saturday, Bob faces a dilemma
since Meetup recommends him three conflicting sport activities
on Sunday: a hiking trip from 8:00 a.m. to 12:00 p.m., a
badminton game from 9:00 a.m. to 11:00 a.m., and a basketball
game from 11:30 a.m. to 1:30 p.m. on a basketball court that
is one-hour away by car from the badminton stadium. Though

1http://www.groupon.com/
2http://www.meetup.com/

Bob is interested in all these three sports, he can only attend
at most one of them. In fact, many users in EBSNs usually
encounter the same problem: they have to confront with a
confusing choice from many conflicting events.

Furthermore, in EBSNs, event organizers tend to enroll
more participants and participants look for arrangements with
personally interesting events. However, existing approaches
usually focus on the arrangement of each single event to a set
of potential users. In such cases, apart from the aforementioned
conflicting scenarios, the global satisfaction for both sides
may not be optimized, which can be measured as the total
interest scores between each event-participant pair of a given
arrangement. In other words, most existing EBSNs do not
support event-participant arrangement in a global view.

Therefore, it is appealing to have a new event-participant
arrangement strategy that satisfies all conflicting constraints
and globally optimizes the arrangement benefits, especially
when arrangements are paid. To further illustrate this moti-
vation, we go through a toy example as follows.

Example 1: Suppose we have three events v1, v2, v3 and
five users u1, u2, u3, u4, u5 in an EBSN. We assume that each
event/user is associated with a profile, which consists of a list
of attributes. For events, some attributes can represent their
preferences towards the participants, such as ages or gender,
and the corresponding attributes of users characterize the users
themselves. Likewise, some attributes can also represent users’
preferences towards different events. Thus, each event/user
is represented by a multi-dimensional attribute vector. Then,
we can calculate a user’s interest in an event based on the
similarity between their attributes. TABLE I presents the
interestingness values between each pair of event and user, as
well as the conflicts between different events. In addition, each
event/user may have a capacity. For an event, the capacity is the
maximum number of participants, and for a user, the capacity
is the maximum number of assigned events. In this example,
v1 − v3 have event capacities of 5, 3, and 2, and u1 − u5

have participant capacities of 3, 1, 1, 2, and 3 respectively
(in brackets). Events v1 and v3 are conflicting. Notice that u1

is the most interested user for both v1 and v3. However, u1

can only be assigned to one of v1 and v3 due to conflicts.
Existing methods do not consider conflicts of events and thus
yield an infeasible arrangement. A feasible and also optimal
arrangement that we want to achieve is shown in bold font in
TABLE I, whose total interestingness values add up to 4.39.

As discussed above, we propose a new event-participant
arrangement strategy, called Global Event-participant Arrange-
ment with Conflict and Capacity (GEACC). Specifically, given
a set of events and a set of users, each one is associated with a

978-1-4799-7964-6/15/$31.00 © 2015 IEEE ICDE Conference 2015735



TABLE I: Interestingness and Conflicts between Events and Users
u1 (3) u2 (1) u3 (1) u4 (2) u5 (3) Conflicts

v1 (5) 0.93 0.43 0.84 0.64 0.65 v3
v2 (3) 0 0.35 0.19 0.21 0.4 NA
v3 (2) 0.86 0.57 0.78 0.79 0.68 v1

capacity to its type, which is the allowable maximum number
for its counterpart, and some events are conflicting. Users have
preferences to different events, each of which is measured as
a non-negative “interestingness value”. The GEACC problem
is to find an event-participant arrangement, such that the sum
of interestingness values over all the assigned pairs of event
and user is maximized, while the capacity and conflicting
constraints are satisfied.

It turns out that when there is no conflicting event con-
straint and all capacity values are set to one, the GEACC
problem can be reduced to a classical problem, weighted
bipartite graph matching[2][3]. Although the GEACC problem
is quite related to traditional assignment or matching problems,
we differ from them in that we introduce capacity to each
event/user and thus study a many-to-many weighted matching
problem. More importantly, we introduce the concept of con-
flicting events in our problem, which is new compared with
traditional problems. Especially, as discussed later, the GEACC
problem is actually NP-hard after introducing the conflicting
event constraint, which is the main challenge to solve the
problem. To the best of our knowledge, this is the first work
that studies the GEACC problem. Therefore, we should design
efficient algorithms specifically for our problem. We make the
following contributions.

• We identify a new event-participant arrangement prob-
lem with extensive real-life applications, and propose a
formal definition of Global Event-participant Arrange-
ment with Conflict and Capacity (GEACC) problem.

• We prove that the GEACC problem is NP-hard and
design two approximation algorithms, MinCostFlow-
GEACC and Greedy-GEACC. MinCostFlow-GEACC
has 1

α approximation ratio, where α is the maxi-
mum of users’ capacities. MinCostFlow-GEACC is
not scalable for large datasets due to its quartic time
complexity. Therefore, we further develop a greedy-
based approximation algorithm, which is more effi-
cient than MinCostFlow-GEACC and guarantees 1

1+α
worst-case approximation ratio. We also present an
exact algorithm, which utilizes an effective pruning
rule to reduce redundant search space.

• We verify the effectiveness and efficiency of the
proposed methods through extensive experiments on
real and synthetic datasets.

The rest of the paper is organized as follows. In Section
II, we formally formulate our problem and prove its NP-
hardness. In Section III, we present two approximation al-
gorithms with theoretically guaranteed approximation ratios.
An exact solution with pruning is presented in Section IV.
Extensive experiments on both synthetic and real datasets are
presented in Section V. We review previous works in Section
VI. We finally conclude this paper in Section VII.

II. PROBLEM STATEMENT

We first introduce two basic concepts, event and user, and
then formally define conflicting event pairs.

Definition 1 (Event): An event is defined as v =< lv, cv >
where lv =< l1v, l

2
v, ..., l

d
v > with liv ∈ [0, T ],∀1 ≤ i ≤ d is

a d-dimensional vector used to record attribute values of the
event, and cv is the capacity of the event, namely the maximum
number of attendees of the event.

Similar to the definition of events, users are formally
defined as follows.

Definition 2 (User): A user is defined as u =< lu, cu >
where lu =< l1u, l

2
u, ..., l

d
u > with liu ∈ [0, T ],∀1 ≤ i ≤ d

is a d-dimensional vector to represent attribute values of the
user, and cu is the capacity of the user, namely the maximum
number of arranged events for the user.

Basically, two events are conflicting if users cannot attend
them at the same time. For example, their timetables may
overlap, or their locations may be too far away for users who
attend one of them to catch the other one. And we have the
following definition.

Definition 3 (Conflicting Event Pair): A pair of events
{vi, vj} are conflicting if a user can attend at most one of
the two events but not both.

Thus, in any feasible arrangement M of events and users,
no user can be assigned to conflicting events simultaneously.
We denote m(v, u) = 1 or {v, u} ∈M as user u is assigned to
event v, and m(v, u) = 0 or {v, u} /∈M as u is not assigned
to v. We then define users’ interest in events as follows.

Definition 4 (Interestingness Value): A user u’s interest
(interestingness value) in event v is measured by a similarity
function sim(lv, lu) ∈ [0, 1] based on the hidden attributes lv
of v and the hidden attributes lu of u.

Particularly, we use Equation (1) as our similarity function
in evaluation, where

√
dT 2 is the furthest Euclidean distance

possible between any pair of lv, lu. Note that other similarity
functions are applicable to our problem. We assume that
maxu sim(lv , lu) > 0, ∀v ∈ V and maxv sim(lv , lu) > 0,∀u ∈ U .

sim(lv, lu) = 1− ‖lv − lu‖2√
dT 2

(1)

We finally define our problem as follows.

Definition 5 (GEACC Problem): Given a set of events V ,
each v of which with maximum attendee capacity cv and
hidden attributes lv , a set of users U , each u of which with
maximum number of assigned events cu and hidden attributes
lu, a set of conflicting event pairs CF and a similarity function,
find an arrangement M among events and users to maximize
MaxSum(M) =

∑
v∈V,u∈U m(v, u)sim(lv, lu) such that

•
∑
um(v, u) ≤ cv,∀v ∈ V and

∑
vm(v, u) ≤

cu,∀u ∈ U
• sim(lv, lu) > 0,∀{v, u} ∈M
• There does NOT exist a triple vi, vj , uk such that

m(vi, uk) = 1, m(vj , uk) = 1, and {vi, vj} ∈ CF

736



cost=0

cap.=5

cost=0.07

cap.=1

cost=0

cap.=3

cost=0

cap.=2

(a) Flow graph constructed

flow=5

flow=2

flow=2

flow=2

flow=2

flow=3

(b) Minimum cost flow result (c) Final arrangement

Fig. 1: Illustrated example of MinCostFlow-GEACC.

Note that we assume that maxv cv ≤ |U | and maxu cu ≤
|V |. Also note that “matching” and “arrangement” are used
interchangeably in this paper. Example 1 in Section I explains
the above definition. We next show the NP-hardness of the
GEACC problem.

Theorem 1: The GEACC problem is NP-hard.

Proof: The maximum flow problem with conflict graph
(MFCG) is NP-hard even if the network consists of only
disjoint paths of length smaller or equal to three[4]. We reduce
the MFCG with disjoint paths of length three (MFCGS) to
the GEACC problem. The following is an instance of the
MFCGS problem. We are given a directed connected graph
G = (N,A) with source node s, sink node t, and m disjoint
paths Pi : s → pi,1 → pi,2 → t, where pi,1, pi,2 6= s, t
and each arc (ni, nj) has capacity rni,nj

. A conflict graph
H = (A,E) is also given with vertices corresponding to arcs
of G s.t. if (a, a′) ∈ E, at most one of a and a′ can carry
flow in a feasible solution. Without loss of generality, we
only consider the instances of MFCGS where any two arcs
(a, a′) ∈ E are in two different paths P, P ′, otherwise we
can safely remove any path containing conflicting arcs without
affecting the solution of the problem. The decision problem of
MFCGS is to decide if there is a feasible flow F s.t. |F | = k.

We then construct an instance of the GEACC problem from
the instance of the MFCGS problem accordingly:

(1) Each node in {pi,2} corresponds to an event in V , where
the capacity of each event in V is set to 1.

(2) For any pi,2, pj,2, if there exist arcs ai ∈ Pi and aj ∈ Pj
such that (ai, aj) ∈ E, the events vi and vj corresponding to
pi,2 and pj,2 are conflicting with each other.

(3) The set of nodes {pi,1} correspond to U in the
following way. For any pi,1, pj,1, if the events vi and vj
corresponding to pi,2 and pj,2 are conflicting as in (2), pi,1
and pj,1 correspond to the same user u, namely pi,1 and pj,1
share u, the capacity of which is set to the number of pi,1’s that
share u. Each of the remaining pi,1’s that do not share users
with any other node corresponds to one user, the capacity of
which is set to 1.

(4) Let the capacity rPi
of each path Pi be

min{rs,pi,1 , rpi,1,pi,2 , rpi,2,t}, and R =
∑
i rPi

. The
interestingness value between a pair of event and user

is set to rPi

R if the corresponding vertices in N are connected
in Pi in G. Otherwise, the interestingness value is set to 0.

In this instance of the GEACC problem, we want to decide
if we can find a feasible matching such that its MaxSum is k

R .
It is easy to see that the MFCGS instance is YES if and only
if the GEACC instance is YES, which completes the proof.

III. APPROXIMATE SOLUTIONS FOR GEACC

In this section, we present two approximation algorithms
for the GEACC problem. The first one has a larger theoretical
approximation ratio, but is not scalable for large datasets. Thus
to overcome the scalability issue, we propose the second more
efficient approximation algorithm that guarantees a slightly
lower approximation ratio.

A. MinCostFlow-GEACC Approximation Algorithm

The idea of the first approximation algorithm
MinCostFlow-GEACC is to first ignore the conflict
condition and try to find a matching with maximum sum of
interestingness values, and then resolve the conflict issues in
the matching afterwards. Without considering conflicts, i.e.
CF = ∅, GEACC can be reduced to the minimum cost flow
(MCF) problem as explained shortly. Thus, we transform a
GEACC instance to an MCF instance and obtain a temporary
matching based on the solution of the transformed MCF
instance. To resolve the conflicting events after obtaining
a temporary matching that may contain conflicts, we use a
greedy method to select the most interesting non-conflicting
events for each user. We first explain the first step in detail.

Given an instance of GEACC with CF = ∅, we construct
a flow network GF = (NF , AF ) as follows. NF = V ∪ U ∪
{s, t}, where s is a source node and t is a sink node. For every
pair v ∈ V, u ∈ U (including those with sim(lv, lu) = 0),
there is a directed arc aF (v, u) ∈ AF from v to u with
aF (v, u).cost = 1 − sim(lv, lu) and aF (v, u).capacity = 1.
For every v ∈ V , there is a directed arc aF (s, v) ∈ AF from
s to v with aF (s, v).cost = 0 and aF (s, v).capacity = cv .
For every u ∈ U , there is a directed arc aF (u, t) ∈ AF from
u to t with aF (u, t).cost = 0 and aF (u, t).capacity = cu.
We then send different amounts of flows from s to t. Specif-
ically, for each ∆ ∈ {∆min,∆min + 1, · · · ,∆max}, where
∆min = min{|V |, |U |} and ∆max = min{

∑
v cv,

∑
u cu},

we send an amount of ∆ flows and calculate its corresponding

737



Algorithm 1: MinCostFlow-GEACC
input : V,U, {cv}, {cu}, {lv}, {lu}, CF
output: A feasible arrangement M

1 construct GF = (NF , AF );
2 m∅(v, u)← 0,∀v ∈ V, u ∈ U ;
3 foreach ∆← ∆min to ∆max do
4 F∆ ← MinCostFlow(GF ,∆);
5 construct M∆

∅ accordingly;
6 if MaxSum(M∆

∅ ) > MaxSum(M∅) then
7 M∅ ←M∆

∅ ;

8 m(v, u)← 0,∀v ∈ V, u ∈ U ;
9 foreach u ∈ U do

10 L← sorted list of {v|m∅(v, u) = 1} in
non-increasing order of sim(lv, lu);

11 for i← 1 to |L| do
12 vLi ← the i-th element of L ;
13 if vLi does not conflict with u’s matched events

in M then
14 m(v, u)← 1;

15 return M

minimum cost flow F∆ = {flow∆(aF )}. We also obtain an
arrangement M∆

∅ corresponding to ∆ by letting m∆
∅ (v, u) = 1

iff flow∆(v, u) = 1 and sim(lv, lu) > 0. Finally, we select
the arrangement M∅ from {M∆min

∅ ,M∆min+1
∅ , · · · ,M∆max

∅ }
with the maximum MaxSum as the arrangement for the
GEACC instance with CF = ∅.

After obtaining M∅, our second step of MinCostFlow-
GEACC is then to resolve the conflicts in M∅. For each
u ∈ U , our task is to select a set of non-conflicting events
from the ones assigned to u in M∅ such that the sum of the
interestingness values between u and the selected events is
maximized. Note that such selection procedure is identical to
the maximum-weight independent set problem by regarding
non-conflicting events as independent to each other and taking
the similarity between u and an event as the weight of the
event. The maximum-weight independent set problem is NP-
hard[5]. Therefore, instead of finding the optimal independent
set, we find a set in a greedy way by iteratively selecting the
most similar unselected pair that does not conflict with any
pair that is already selected.

The whole procedure of MinCostFlow-GEACC is illus-
trated in Algorithm 1. In lines 1-7, we first construct a flow
network GF and calculate the minimum cost flow on GF
with different amounts of flows as described previously, and
then obtain a matching M∅ for the GEACC instance without
considering conflicting events. In the second step, we obtain
a feasible matching M by resolving the conflicting events for
each u in lines 8-14. Particularly, at each iteration, we greedily
add the most similar pair possible by checking its conflicts with
the selected pairs in lines 12-14.

Example 2: Back to our running example in Example 1.
Fig. 1a shows the flow network GF . Fig. 1b shows the min-
imum cost flow corresponding to M∅, where each presented
arc has flow at least one. The arcs with flows larger than one
are marked, and the others have flow of one. Notice that u1 is

assigned to conflicting events v1 and v3 simultaneously in M∅.
Since sim(lv1 , lu1) > sim(lv3 , lu1), only v1 is assigned to u1

in the final result. Similarly, for u5, we remove {v1, u5} and
assign v3 to u5. Fig. 1c shows the final arrangement result,
which has MaxSum = 4.13.

Approximation Ratio. Next, we study the approximation
ratio of MinCostFlow-GEACC.

Lemma 1: The M∅ obtained from the minimum cost flows
of GF is optimal for the GEACC instance with CF = ∅.

Proof: Suppose to the contrary, there exists another
matching M ′∅ for the GEACC instance with CF = ∅ such
that MaxSum(M ′∅) > MaxSum(M∅).

Let M?
∅ initially be a copy of M ′∅. We modify M?

∅ as
follows. If

∑
v∈V,u∈U m?

∅(v, u) < ∆min, there must exist some
pair {v′, u′} such that neither v′ nor u′ is fully occupied and
m?
∅(v
′, u′) = 0. For each of such pairs, we assign v′ to u′

in M?
∅ , i.e. changing m?

∅(v
′, u′) to one, regardless of whether

sim(lv′ , lu′) = 0 or not. Therefore, we obtain a M?
∅ such

that ∆ =
∑

v∈V,u∈U m?
∅(v, u) ≥ ∆min and MaxSum(M?

∅ ) ≥
MaxSum(M ′

∅). Notice that it must hold that ∆ ≤ ∆max. Recall
that M∆

∅ is the matching obtained from the minimum cost flow
with amount ∆. Since MaxSum(M∅) ≥ MaxSum(M∆

∅ ), it
holds that MaxSum(M?

∅ ) > MaxSum(M∆
∅ ).

Now we construct a flow F ? = {flow?(aF )} on GF from
M?
∅ as follows. Let flow?(v, u) = m?

∅(v, u) for each {v, u}
pair, flow?(s, v) =

∑
u∈U m

?
∅(v, u) for each {s, v} pair, and

flow?(u, t) =
∑
v∈V m

?
∅(v, u) for each {u, t} pair. It is easy

to see that F ? is feasible with a total amount of ∆ flows. Thus,

F ?.cost =
∑

v∈V,u∈U

flow?(v, u)× (1− sim(lv , lu))

= ∆−
∑

v∈V,u∈U

m?
∅(v, u)× sim(lv , lu)

< ∆−
∑

v∈V,u∈U

m∆
∅ (v, u)× sim(lv , lu)

= ∆−
∑

v∈V,u∈U,sim(lv,lu)>0

flow∆(v, u)× sim(lv , lu)

−
∑

v∈V,u∈U,sim(lv,lu)=0

flow∆(v, u)× sim(lv , lu)

= F∆.cost

We obtain a feasible flow F ? with cost less than F∆,
contradicting with the fact that F∆ is the minimum cost flow
on GF with amount of ∆ flows. It follows that M∅ is optimal
for the GEACC instance with CF = ∅.

Corollary 1: Let MOPT = {mOPT } denote the optimal fea-
sible matching. It holds that MaxSum(MOPT ) ≤MaxSum(M∅).

Theorem 2: For the matching M returned by
MinCostFlow-GEACC, it holds that MaxSum(M) ≥
MaxSum(MOPT )

max cu
, i.e. MaxSum(M) is at least 1

max cu
of the

optimal result.

Proof: For each u that is matched to at least one event
in M , let vmaxu denote the most interesting event matched
to her/him, i.e. vmaxu = arg maxv{sim(lv, lu)|m(v, u) = 1}.
Obviously, sim(lvmax

u
, lu) × cu ≥

∑
v|m∅(v,u)=1 sim(lv, lu).

Notice that m(vmaxu , u) = m∅(v
max
u , u) = 1 as vmaxu is always

selected in Algorithm 1 if u is matched in M (and thus is also
matched in M∅). Thus, it holds that

738



MaxSum(M) =
∑

u|vmax
u ∃

∑
v|m(v,u)=1

sim(lv , lu)

≥
∑

u|vmax
u ∃

sim(lvmax
u

, lu)

≥
∑

u|vmax
u ∃

∑
v|m∅(v,u)=1 sim(lv , lu)

cu

≥

∑
u|vmax

u ∃
∑

v|m∅(v,u)=1 sim(lv , lu)

max cu

=
MaxSum(M∅)

max cu
≥

MaxSum(MOPT )

max cu

Complexity Analysis. For the first step of MinCostFlow-
GEACC, numerous algorithms have been proposed for the
MCF problem. [6] pointed out that Successive Shortest Path
Algorithm (SSPA) is the one suitable for large-scale data
and many-to-many matching with real-valued arc costs. Then
the first step takes O((∆2

max − ∆2
min)((|V | × |U | + (|V | +

|U |)) log(|V | + |U |))) time. For the second step, the time
complexity is O(|U |((max cu) log(max cu) + (max cu)2)),
where O((max cu) log(max cu) is the cost of line 10 and
O((max cu)2) is the cost of lines 11-14. Since max cu is rela-
tively small compared to the other parameters, the major time
consumption of MinCostFlow-GEACC comes from computing
the minimum cost flow. In summary, the total time cost is
O((∆2

max−∆2
min)((|V |×|U |+(|V |+ |U |)) log(|V |+ |U |))+

|U |((max cu) log(max cu) + (max cu)2)).

B. Greedy-GEACC Approximation Algorithm

MinCostFlow-GEACC could be inefficient when the scale
of data is large. In this subsection, we present a more efficient
algorithm, Greedy-GEACC, with a slightly lower approxi-
mation ratio compared with that of MinCostFlow-GEACC.
The main idea of Greedy-GEACC is to greedily add the
most similar unmatched pair {v, u} that does not conflict
with existing matched pairs into the current matching at each
iteration. Unlike MinCostFlow-GEACC that resolves conflicts
after obtaining a temporary result, Greedy-GEACC avoids
conflicts from the first beginning.

Specifically, we maintain a heap H to store the most similar
pair candidates between v ∈ V and u ∈ U and extract the
most similar one from H at each iteration. We initialize H
as follows. For each v ∈ V , we find its first nearest neighbor
(NN) unn ∈ U , i.e. sim(lv, lunn

) ≥ sim(lv, lu′),∀u′ ∈ U .
We call unn a visited neighbor of v, and the others unvisited
neighbors. Each such pair {v, unn} is pushed into H . Note
that sim(lv, lunn

) > 0 according to our problem definition.
Similarly, for each u ∈ U , we also find its first NN vnn ∈ V .
We also call vnn a visited neighbor of u. For each such pair
{vnn, u}, if it is not yet in H , we push it into H . Thus, NO pair
is pushed into H for more than once. After the initialization
step, we enter the iteration of greedily adding the most similar
pair in H into the current matching, which is empty initially.

We then iterate as follows. At each iteration, we pop the
pair {v, u} with sim(lv, lu) ≥ sim(lv′ , lu′),∀{v′, u′} ∈ H
from H , which we call a visited pair. Thus, pairs that have not
yet been pushed into H or those that are still in H are called
unvisited. If neither v nor u is full in capacity, and {v, u}

Algorithm 2: Greedy-GEACC
input : V,U, {cv}, {cu}, {lv}, {lu}, CF
output: A feasible arrangement M

1 H ← ∅;
2 foreach v ∈ V do
3 unn ← v’s first NN in U ;
4 push {v, unn} into H;
5 foreach u ∈ U do
6 vnn ← u’s first NN in V ;
7 if {vnn, u} /∈ H then
8 push {vnn, u} into H;

9 heapify H;
10 m(v, u)← 0,∀v ∈ V, u ∈ U ;
11 while H 6= ∅ do
12 extract the most similar pair {v, u} from H;
13 if (cv > 0) and (cu > 0) and (v does not conflict

with u’s matched events) then
14 m(v, u)← 1;
15 decrease cv, cu by 1;
16 if cv > 0 then
17 unn ← v’s next feasible unvisted NN;
18 if unn∃ and {v, unn} /∈ H then
19 push {v, unn} into H;

20 if cu > 0 then
21 vnn ← u’s next feasible unvisited NN;
22 if vnn∃ and {vnn, u} /∈ H then
23 push {vnn, u} into H;

24 return M

does not conflict with existing matched pairs, we can safely
add {v, u} into the current matching by setting m(v, u) = 1
and decreasing the available capacities of v and u by one
respectively. Whether {v, u} is added to the current matching
or not, we then update H as follows. For v, if it is not yet
fully occupied, we find its next feasible unvisited NN unn ∈ U ,
i.e. sim(lv, lunn

) ≥ sim(lv, lu′),∀ feasible unvisited neighbor
u′ of v, where we call an unvisited neighbor u′ feasible if
sim(lv, lu′) > 0 and {v, u′} satisfies the capacity and conflict
constraints if it is to be added to the matching. Note that unn
may not exist as there may be no more feasible unvisited
neighbors in U for v. In such case, we do nothing to H .
Otherwise, {v, unn} is pushed into H if it is not yet in H . We
call v a finished node if unn cannot be found for v. Similarly,
for u, we also find its next feasible unvisited NN vnn ∈ V if
u is not yet fully occupied. If vnn exists and {vnn, u} is not
yet in H , we push {vnn, u} into H . We also call u a finished
node if vnn cannot be found for u. unn(vnn) becomes v(u)’s
visited neighbor if it exists. After updating H , we proceed to
the next iteration. The iteration procedure terminates when H
becomes empty.

The procedure of Greedy-GEACC is illustrated in Algo-
rithm 2. In lines 1-9, we initialize the heap H by pushing
each v(u) and its first NN in U (V ) into H . In lines 11-23, we
iteratively pop the most similar pair {v, u} from H and add
it to the current matching if possible. Lines 13-15 check the
feasibility of the pair before adding it to the matching. Then in

739



lines 16-23, we push v(u) paired with its next feasible unvisited
NN in U (V ) into H if possible. The whole iteration terminates
when H becomes empty.

Example 3: We continue to use Example 1 for illustration
of Greedy-GEACC. Fig. 2a shows the state of H after the
first iteration, where {v1, u1} is popped from H and added
to the matching. The next feasible unvisited NN of v1 is u3

but {v1, u3} is already in H , so we do not push {v1, u3} into
H. As the next feasible unvisited NN of u1 cannot be found,
u1 becomes a finished node. Then in the second iteration,
as shown in Fig. 2b, we pop {v3, u1} from H. Note that v3

conflicts with v1, which is already matched to u1, so we cannot
add {v3, u1} to the matching. The next NN of v3 is u4, and
{v3, u4} is already in H , so we do not push {v3, u4} into H .
Then during the third iteration, {v1, u3} is popped from H ,
which can be added to the matching. The next NN of v1 is
u5, and we push {v1, u5} into H (in bold). Note that u3 has
been fully occupied, so we do not find the next NN of u3.
Subsequent iterations are omitted for brevity. Fig. 2d shows
the final iteration, where H becomes empty and we have a
final arrangement with MaxSum of 4.28.

We next show some properties and the correctness of
Greedy-GEACC.

Lemma 2: For every v(u), if v(u) is not a finished node, at
least one pair incident to v(u) is in H before the next iteration.

Proof: In the initialization step, for each v, exactly one
pair {v, unn} incident to v is pushed into H . For each u, either
one pair {vnn, u} incident to u is pushed into H or {vnn, u}
is already in H . Therefore, Lemma 2 holds before entering the
iteration procedure of Greedy-GEACC. Then at each iteration,
whenever a pair {v, u} is popped from H , either a new pair
{v, unn}({vnn, u}) for v(u) is already in or pushed into H ,
or v(u) becomes a finished node. It follows that at least one
edge incident to v(u) is in H before proceeding to the next
iteration if v(u) is unfinished.

Lemma 3: At each iteration of Greedy-GEACC, the most
similar unvisited pair {v, u} possible is popped from H , i.e.
sim(lv, lu) ≥ sim(lv′ , lu′) for all feasible unvisited {v′, u′} ∈
{{v′, u′}|v′, u′ are unfinished}.

Proof: For any feasible unvisited pair {v′, u′} whose v′, u′
are both unfinished, it is either in H or has not yet been
pushed into H . Obviously, if {v′, u′} ∈ H , sim(lv, lu) ≥
sim(lv′ , lu′). It remains to analyze the case when {v′, u′} has
not yet been pushed into H . In such case, Lemma 2 indicates
that at least one pair {v′, u′nn}({v′nn, u′}) incident to v′(u′) is
in H . It is easy to see that sim(lv′ , lu′nn

) ≥ sim(lv′ , lu′) and
sim(lv′nn

, lu′) ≥ sim(lv′ , lu′) from the way we push pairs
into H . Thus, sim(lv, lu) ≥ sim(lv′ , lu′nn

) ≥ sim(lv′ , lu′)
and sim(lv, lu) ≥ sim(lv′nn

, lu′) ≥ sim(lv′ , lu′).

Corollary 2: At each iteration of Greedy-GEACC, for the
popped pair {v, u}, it holds that sim(lv, lu) ≤ sim(lv′ , lu′),∀
visited {v′, u′}.

Lemma 4: Greedy-GEACC terminates after a finite num-
ber of iterations.

Proof: First, it is easy to see that each pair {v, u} is
pushed into H for at most once. Since each v(u) has |U |(|V |)
neighbors in U (V ), it follows that a finite number of pairs are

pushed into H . It follows that H becomes empty after a finite
number of iterations.

Lemma 5: When Greedy-GEACC terminates, no more un-
matched pair {v, u}, i.e. m(v, u) = 0, can be added to the
current matching.

Proof: For each unmatched pair {v, u}, it is either visited
or has never been pushed into H . In the first case, {v, u} is
unmatched either because v or u or both are fully occupied,
or because {v, u} conflicts with the existing matching. Thus,
{v, u} cannot be added to the current matching. In the latter
case, since {v, u} has never been pushed into H , it follows that
u is NOT a feasible unvisited neighbor of v or v is NOT a
feasible unvisited neighbor of u. Thus, {v, u} cannot be added
to the current matching. It follows that Lemma 5 holds.

Lemmas 2 to 5 ensure that Greedy-GEACC adds the
most similar unvisited pair possible into the matching at each
iteration and terminates when the current matching can no
more be improved by adding new unmatched pairs.

Approximation Ratio. We next study the approximation
ratio of Greedy-GEACC.

Theorem 3: For the matching M returned by Greedy-
GEACC, it holds that MaxSum(M) ≥ MaxSum(MOPT )

1+max cu
, i.e.

MaxSum(M) is at least 1
1+max cu

of the optimal result.

Proof: For any {v, u} ∈ M , i.e. m(v, u) = 1, either
(1) mOPT (v, u) = 1, or (2) mOPT (v, u) = 0, and there
are at most max cu pairs {v′1, u}, {v′2, u}, · · · , {v′k, u}, 0 ≤
k ≤ max cu that are matched in MOPT but unmatched
in M because of {v, u} (due to conflicts with {v, u} or
capacity constraint as {v, u} occupies one capacity of u
and sim(lv, lu) ≥ sim(lv′i , lu), 1 ≤ i ≤ k), and there
is at most one pair {v, u′} that is matched in MOPT but
unmatched in M due to {v, u} (since {v, u} occupies one
capacity of v and sim(lv, lu) ≥ sim(lv, lu′)), and thus
there are at most 1 + max cu pairs that are matched in
MOPT but unmatched in M because of {v, u}. It follows
that sim(lv, lu) ≥ 1

1+max cu
(sim(lv, lu′) +

∑
i sim(lv′i , lu)).

Notice that for each {v′, u′} ∈ MOPT \M , there must be at
least one pair {v, u} ∈ M \MOPT that is “responsible for”
the “unmatched case” of {v′, u′} in M due to (2), otherwise
{v′, u′} would have been added into M in Greedy-GEACC.
Then we have

MaxSum(M) = MaxSum(M ∩MOPT ) + MaxSum(M \MOPT )

= MaxSum(M ∩MOPT ) +
∑

{v,u}∈M\MOPT

sim(lv , lu)

≥MaxSum(M ∩MOPT )

+
1

1 + max cu

∑
{v′,u′}∈MOPT \M

sim(lv′ , lu′ )

= MaxSum(M ∩MOPT )

+
1

1 + max cu
MaxSum(MOPT \M)

>
1

1 + max cu
(MaxSum(M ∩MOPT )

+ MaxSum(MOPT \M))

=
1

1 + max cu
MaxSum(MOPT ) (2)

740



H = {{ }:0.93, 

{ }:0.86, { }:0.84, 

{ }:0.79, { }:0.68, 

{ }:0.57, { }:0.4}

(a) 1st iteration

H = {{ }:0.86, 

{ }:0.84, { }:0.79, 

{ }:0.68, { }:0.57, 

{ }:0.4}

(b) 2nd iteration

H = {{ }:0.84, 

{ }:0.79, { }:0.68, 

{ }:0.65, { }:0.57, 

{ }:0.4}

(c) 3rd iteration

H = {{ }:0.21}

(d) Final iteration

Fig. 2: Illustrated example of Greedy-GEACC.

Complexity Analysis. Without limiting ourselves to using
specific index, let σ(S) denote the time to find a k-th NN in a
set S. Note that a number of index techniques can be used in
our problem, such as iDistance[7] and VA-File[8]. It follows
that the time cost of the initialization step is O(|V |σ(V ) +
|U |σ(U) + |V |+ |U |), where O(|V |+ |U |) is the time cost in
building H . In the second step, we have at most O(|V ||U |)
iterations, each of which takes O(log(|V |+ |U |)) to pop a pair
from H and O(σ(V ) + σ(U) + log(|V | + |U |)) to push new
pairs into H . In summary, Greedy-GEACC takes O(|V |σ(V )+
|U |σ(U)+ |V |+ |U |+ |V ||U |(σ(V )+σ(U)+log(|V |+ |U |)))
time in worst case.

IV. EXACT SOLUTION FOR GEACC

In this section, we present an exact solution for the GEACC
problem. Since GEACC is NP-hard, it seems that the only
way to find an optimal solution is to enumerate all possible
matchings and select the optimal one. Without pruning, the
search space will be as large as 2|V |×|U |. To improve efficiency,
we propose a pruning technique to reduce the search space. We
name this exact algorithm Prune-GEACC.

Basically, in any matching, each pair {v, u} has two states:
matched or unmatched. Thus, we search possible matchings by
enumerating different combinations of states of all pairs in a
recursive way. Specifically, for each v, let uv,j be its j-NN in
U and sv be sim(lv, luv,1

). Let L be the sorted list of v in
non-increasing order of sv × cv , where the i-th element is vLi .
We visit each element in L in order, and enumerate each pair
{v, u} incident to v in non-increasing order of sim(lv, lu). In
other words, we visit |U | NNs of v in order. Let {vLi , ui,j}
be the pair that will be visited next, Mvisited be the partial
matching determined by the states of the visited pairs, and
Mbest be the best complete matching found so far. And we
have the following lemma.

Lemma 6: Let

summax(vLi , ui,j) = MaxSum(Mvisited)+∑
i+1≤k≤|V |

svLk × cvLk + sim(lvLi , lui,j
)× cvLi ,remain (3)

Algorithm 3: Prune-GEACC
input : V,U, {cv}, {cu}, {lv}, {lu}, CF
output: A feasible arrangement M

1 M ← Greedy-GEACC();
2 foreach v ∈ V do
3 uv,1 ← 1-NN of v;
4 sv ← sim(lv, luv,1

);

5 L← sorted list of v in non-increasing order of sv × cv;
6 sumremain ←

∑
2≤k≤|V | svLk × cvLk ;

7 mc(v, u)← 0,∀v ∈ V, u ∈ U ;
8 Search-GEACC(1, 1);
9 return M

where cvLi ,remain is the remaining capacity of vLi after be-
ing assigned partially in Mvisited. If summax(vLi , ui,j) ≤
MaxSum(Mbest), for any matching M ′ ⊇Mvisited, it holds
that MaxSum(M ′) ≤ MaxSum(MOPT ), where MOPT is
the optimal matching.

Proof: Let Mremain denote the partial matching on
the remaining unvisited pairs. Note that Mremain has no
effect on Mvisited. Thus, for matching M ′ ⊇ Mvisited,
MaxSum(M ′) = MaxSum(Mvisited) + MaxSum(Mremain).
It is easy to see that for each vLk (i + 1 ≤ k ≤ |V |), it
holds that svLk × cvLk ≥

∑
umremain(vLk , u) × sim(lvLk , lu).

For vLi , it holds that sim(lvLi , lui,j
) × cvLi ,remain ≥∑

j≤l≤|U |mremain(vLi , ui,l) × sim(lvLi , lui,l
). Therefore, it

follows that MaxSum(Mbest) ≥ summax(vLi , ui,j) ≥
MaxSum(Mvisited) + MaxSum(Mremain) = MaxSum(M ′).
Since MaxSum(Mbest) ≤MaxSum(MOPT ), it follows that
MaxSum(M ′) ≤MaxSum(MOPT ).

Lemma 6 indicates that when we are about to
visit a pair {vLi , ui,j} during the recursion process, if
summax(vLi , ui,j) ≤ MaxSum(Mbest), we can safely prune
at {vLi , ui,j} as no matching better than the current one
could be found by visiting the remaining unvisited pairs.
Therefore, in Prune-GEACC, we maintain summax(vLi , ui,j)
and prune at a certain search node whenever Lemma 6
holds. First note that actually we do not need to repetitively

741



Algorithm 4: Search-GEACC
input : vid, uid

1 v ← vLvid ;
2 u← uid-NN of v;
3 if cv > 0 and cu > 0 and v does not conflict with u’s

matched events then
4 mc(v, u)← 1;
5 decrease cv, cu by 1;
6 if uid = |U | or cv = 0 then
7 if vid = |V | then
8 if MaxSum(Mc) > MaxSum(M) then
9 update M to Mc;

10 else if
MaxSum(Mc) + sumremain > MaxSum(M)
then

11 sumremain ←
sumremain − svLvid+1

× cvLvid+1
;

12 Search(vid + 1, 1);
13 recover sumremain;
14 else
15 unn ← (uid + 1)-NN of v;
16 if MaxSum(Mc) + sumremain +

sim(lv, lunn
)× cv > MaxSum(M) then

17 Search(vid, uid + 1);

18 mc(v, u)← 0;
19 increase cv, cu by 1;
20 Same as lines 6-17;

calculate summax(vLi , ui,j) by summing over all unvisited
pairs. We maintain sumremain =

∑
i+1≤k≤|V | svLk × cvLk ,

and summax(vLi , ui,j) = MaxSum(Mvisited)+sumremain+
sim(lvLi , lui,j

)× cvLi ,remain. sumremain is maintained as fol-
lows. Initially, sumremain =

∑
2≤k≤|V | svLk × cvLk . Whenever

we are about to visit {vLi , ui,1}, we simply subtract svLi × cvLi
from sumremain. Also note that initially, our best matching is
empty, which could reduce the efficiency of Prune-GEACC at
the beginning of recursion. Therefore, we run Greedy-GEACC
first before running Prune-GEACC, and use the matching
found by Greedy-GEACC as the best matching found so far
so that to prune poor matchings from the first beginning.

The main procedure of Prune-GEACC is illustrated in
Algorithm 3. In line 1, we find an initial matching M by
running Greedy-GEACC. In lines 2-4, we find the 1-NN uv,1
in U for each v and obtain sv . In lines 5-7, we initialize L,
sumremain and Mc. We enter recursion by visiting the first
element in L and its 1-NN in line 8.

Algorithm 4 illustrates the Search recursion procedure of
Prune-GEACC. At each depth of recursion, we enumerate the
two states of a particular pair {v, u}, where v is the vid-th
element in L, and u is the uid-NN of v. If {v, u} satisfies
certain constraints (line 3), we enumerate the state of {v, u} as
matched in lines 4-19. In lines 4-5, we add {v, u} to the current
matching Mc, and decrease the capacities of v, u properly.
If uid is |U | or v is fully occupied, we proceed to the next
element vLvid+1 in L and enumerate the states of pair vLvid+1
and its 1-NN in U (lines 7-13). Otherwise, we proceed to the

TABLE II: Real Dataset
City |V | |U | cv cu

|CF |
|V |(|V |−1)/2

VA 225 2012 Uni.: [1, 50] Uni.: [1, 4] 0, 0.25,
Auckland 37 569 Nor.: µ = 25, Nor.: µ = 2, 0.5, 0.75,
Singapore 87 1500 σ = 12.5 σ = 1 1

next NN of v and enumerate the states between it and v (lines
15-17). In lines 7-9, we check whether all pairs have been
enumerated and update the best matching found so far (lines
8-9). Otherwise, we check whether enumerating the remaining
pairs could yield a better matching (line 10). If finding a better
matching is possible, we update sumremain and proceed to
enumerating the next pair (lines 11-13). Similarly, we check
whether finding a better matching is possible in line 15 if we
are to proceed to enumerating the pair of v and its next NN.
In line 20, we enumerate the state of {v, u} as unmatched, the
procedure of which is the same as lines 6-17.

V. EVALUATION

We use both real and synthetic datasets for experiments. We
use the Meetup dataset from [1] as real dataset. In the Meetup
dataset, each user is associated with a set of tags and a location.
Each event in the dataset is also associated with a location. The
events are not explicitly associated with tags. Note that each
event is created by a “group” on Meetup, which can be viewed
as a community, and each group is associated with a set of tags.
Thus, for each event, we use the tags of the group who creates
it as the tags of the event itself. Since the tags are created
by users, some of them have misspellings and different tags
referring to the same thing are used by users. To address this
problem, we merge the tags with the same meaning and select
20 most popular tags as attributes of users/events, where each
initial attribute value is the number of original tags associated
with the user/event that refer to the same merged tag. For
example, if a user/event is tagged with “outdoor-activities”
and “outdoor-lovers-and-travel-lovers”, both of which refer to
the same merged tag “outdoor”, then the user/event has initial
value of 2 for attribute “outdoor”. We further normalize each
attribute value by the total number of original tags associated
with the user/event. For example, if the user/event with initial
value of 2 for attribute “outdoor” is associated with 10 original
tags in total, the final value of attribute “outdoor” will be
0.2 for the user/event. Notice that it is unlikely for a user
living in a city to attend a meet-up event held in another
city. Therefore, we cluster events and users based on their
locations and focus on the events/users located in the same
city. We select three popular cities, Vancouver, Auckland, and
Singapore, and extract events and users located within the area
around each city. Since capacity and conflict information is
not given in the dataset, we generate capacity of events/users
following Uniform and Normal distribution, and randomly
select a subset of event pairs as conflicting pairs. TABLE II
presents the statistics and configuration. For synthetic data, we
generate attribute values and capacity of events/users following
Uniform, Normal and Zipf distributions respectively. Statistics
and configuration of synthetic data are illustrated in TABLE
III, where we mark our default settings in bold font. Note that
all generated capacity values are converted into integers.

Baselines. We use two random algorithms as baselines. For
the first baseline, Random-V, we iterate over each v ∈ V , and

742



TABLE III: Synthetic Dataset
Factor Setting
|V | 20, 50, 100, 200, 500
|U | 100, 200, 500, 1000, 2000, 5000
d 2, 5, 10, 15, 20

liv, l
i
u

(T = 10000) Uniform: [0, T], Zipf: 1.3
Normal: µ = T/4, σ = T/4; µ = 3T/4, σ = T/4

cv
Uniform: [1, 10], [1, 20], [1, 50], [1, 100], [1, 200]

Normal: µ = 25, σ = 12.5

cu
Uniform: [1, 2], [1, 4], [1, 6], [1, 8], [1, 10]

Normal: µ = 2, σ = 1
|CF |

|V |(|V |−1)/2
0, 0.25, 0.5, 0.75, 1

Scalability |V | = 100, 200, 500, 1000
|U | = 10K, 25K, 50K, 75K, 100K

at each iteration add each pair {v, u},∀u ∈ U into M with
probability cv

|U | if {v, u} satisfies all the constraints. For the
second baseline, Random-U, we iterate over each u ∈ U , and
at each iteration add each pair {v, u},∀v ∈ V into M with
probability cu

|V | if {v, u} satisfies all the constraints.

We mainly evaluate our algorithms in terms of MaxSum,
running time and memory cost, and study the effect of varying
parameters on the performance of the algorithms. The algo-
rithms are implemented in C++, and the experiments were
performed on a machine with Intel i7-2600 3.40GHZ 8-core
CPU and 8GB memory.

Effect of cardinality. We first show the effect of varying
cardinality of V and U . The first column of Fig. 3 shows
the results on varying |V |, where the other parameters are
set to default. We have the following observations. First,
Greedy-GEACC outperforms in every aspect. Greedy-GEACC
consumes as less as running time and space as the baselines
do, and returns matchings with the largest MaxSum. Though
Greedy-GEACC has a theoretically lower approximation ra-
tio than that of MinCostFlow-GEACC, in practice Greedy-
GEACC can outperform MinCostFlow-GEACC in terms of
MaxSum. The reason is that the worst case of Greedy-
GEACC as analyzed in Section III.B can rarely happen. Thus,
Greedy-GEACC can perform much better in practice. Second,
MinCostFlow-GEACC achieves larger MaxSum than the base-
lines do but is much less efficient in both time and space. Third,
MaxSum increases when |V | becomes larger, but the increase
becomes smaller when |V | gets large. This is because when
|V | is larger, users generally have more matching options and
there may be more matched pairs. However, when |V | becomes
too large, users’ capacity will become saturated and thus the
MaxSum will increase slower. Finally, the running time and
memory cost increases (slightly for Greedy-GEACC) as |V |
increases, which is natural as the data size becomes larger.

The second column of Fig. 3 shows the results on varying
|U |, which have similar patterns to those when |V | varies.

Effect of dimensionality. We next show the results of
varying the dimensionality d of the attribute space in the third
column of Fig. 3. We can observe that MaxSum decreases as
d increases since the attribute space becomes sparser when d
increases, which leads to the larger averaged distance between
attribute vectors. Also, d has little effect on both the time and
space consumption of the algorithms.

Effect of conflict set size. The last column of Fig. 3 shows
the results of varying |CF |, where we vary the size of CF

w.r.t. the size of event pairs, i.e. |V |(|V | − 1)/2. Notice there
are two extreme cases: when |CF |/(|V |(|V | − 1)/2) = 0,
i.e. CF = ∅, and when |CF |/(|V |(|V | − 1)/2) = 1, i.e.
every pair of events are conflicting. The other parameters
are set to default. We have the following observations. First,
when CF = ∅, MinCostFlow-GEACC has a slightly better
MaxSum than Greedy-GEACC does, which is reasonable
as MinCostFlow-GEACC returns an optimal matching in this
case. Second, MaxSum decreases when the relative size of
CF increases. This is reasonable as the number of possible
matched pairs decreases as |CF | increases. Finally, the varying
size of CF has little effect on the running time of the
algorithms, as the cost of the algorithms mainly depends on
the size of V and U .

Effect of capacity. We next study the effect of capacity
of events and users. We first study the results when cv varies,
which are shown in the first column of Fig. 4. The values of cv
are generated uniformly in range [1, max cv], where max cv
varies in our experiment. Thus, when max cv increases, the
overall capacity of v increases too. We have the following
observations. First, MaxSum generally increases as cv be-
comes larger. This is reasonable as events can accommodate
more users who are interested in them when their capacity
increases. Second, increasing cv results in larger time cost
of MinCostFlow-GEACC, but has little effect on Greedy-
GEACC and the baselines. This is because when cv increases,
the number of iterations for calculation of minimum cost
flow in MinCostFlow-GEACC also increases, leading to larger
time consumption of MinCostFlow-GEACC. Notice that when
cv is large w.r.t. |U |(= 1000), the increase of time cost
of MinCostFlow-GEACC becomes slighter since the amount
of flow in such cases is determined by cu (remember that
∆max = min{

∑
cv,

∑
cu}. Finally, varying cv has little effect

on the memory cost of all the algorithms.

The second column of Fig. 4 shows the results of varying
cu. Similary, the values of cu are generated uniformly in range
[1, max cu] and max cu varies in our experiment. We observe
that the results have similar patterns as those of varying cv
though with some fluctuation due to the small gap between
consecutive max cu’s.

Effect of distribution. The third column of Fig. 4 shows
the results when we generate the synthetic data according to
different distributions. Specifically, we present the results when
the attribute values are generated following Zipf distribution
and the capacity values are generated following Normal distri-
bution. We observe that the general patterns of data generated
by different distributions are similar in every aspect. Therefore,
it indicates that we do not lose generality by studying the other
experiments on data generated uniformly.

We also study the results when the attribute values are
generated following Uniform, Normal and Zipf distributions
respectively and the capacity values are generated following
Uniform and Normal distributions. The results have similar
trending patterns, and we do not present them for brevity.

Real dataset. The last column of Fig. 4 shows the results
on real dataset (Auckland) when the capacity values are gener-
ated following Uniform distribution. Notice that the results on
real dataset have similar patterns to those of the synthetic data.
Similar patterns are observed on the other two real datasets

743



2050 100 200 500
0

500

1000

1500

2000

|V|

M
a

x
S

u
m

 

 

MinCostFlow−GEACC

Greedy−GEACC

Random−V

Random−U

(a) MaxSum of varying |V |

0

500

1000

1500

2000

1
0

0
2

0
0

5
0

0

1
K

2
K

5
K

|U|

M
a

x
S

u
m

 

 

MinCostFlow−GEACC

Greedy−GEACC

Random−V

Random−U

(b) MaxSum of varying |U |

2 5 10 15 20
800

1000

1200

1400

1600

1800

2000

2200

Dimensionality

M
a

x
S

u
m

 

 

MinCostFlow−GEACC

Greedy−GEACC

Random−V

Random−U

(c) MaxSum of varying d

0 0.25 0.5 0.75 1

500

1000

1500

2000

|CF|/(|V|(|V|−1)/2)

M
a

x
S

u
m

 

 
MinCostFlow−GEACC

Greedy−GEACC

Random−V

Random−U

(d) MaxSum of varying |CF |

2050 100 200 500
0

0.5

1

1.5

2

2.5

3
x 10

5

|V|

R
u

n
n

in
g

 t
im

e
(s

e
c
s
)

 

 

MinCostFlow−GEACC

Greedy−GEACC

Random−V

Random−U

(e) Runtime of varying |V |

0

1

2

3

4
x 10

5

1
0

0
2

0
0

5
0

0

1
K

2
K

5
K

|U|

R
u

n
n

in
g

 t
im

e
(s

e
c
s
)

 

 

MinCostFlow−GEACC

Greedy−GEACC

Random−V

Random−U

(f) Runtime of varying |U |

2 5 10 15 20
0

1

2

3

4

5

6
x 10

4

Dimensionality

R
u

n
n

in
g

 t
im

e
(s

e
c
s
)

 

 

MinCostFlow−GEACC

Greedy−GEACC

Random−V

Random−U

(g) Runtime of varying d

0 0.25 0.5 0.75 1
0

1

2

3

4

5

6
x 10

4

|CF|/(|V|(|V|−1)/2)

R
u

n
n

in
g

 t
im

e
(s

e
c
s
)

 

 

MinCostFlow−GEACC

Greedy−GEACC

Random−V

Random−U

(h) Runtime of varying |CF |

2050 100 200 500
0

10

20

30

40

|V|

M
e

m
o

ry
(M

B
)

 

 

MinCostFlow−GEACC

Greedy−GEACC

Random−V

Random−U

Input

(i) Memory of varying |V |

0

10

20

30

40

1
0

0
2

0
0

5
0

0

1
K

2
K

5
K

|U|

M
e

m
o

ry
(M

B
)

 

 

MinCostFlow−GEACC

Greedy−GEACC

Random−V

Random−U

Input

(j) Memory of varying |U |

2 5 10 15 20
3

4

5

6

7

8

9

10

Dimensionality

M
e

m
o

ry
(M

B
)

 

 

MinCostFlow−GEACC

Greedy−GEACC

Random−V

Random−U

Input

(k) Memory of varying d

0 0.25 0.5 0.75 1
2

4

6

8

10

12

|CF|/(|V|(|V|−1)/2)

M
e

m
o

ry
(M

B
)

 

 

MinCostFlow−GEACC

Greedy−GEACC

Random−V

Random−U

Input

(l) Memory of varying |CF |

Fig. 3: Results on varying cardinality, dimensionality and the size of conflict set.

and when the capacity values are generated following Normal
distribution, and we omit the results due to limited space.

Scalability. MinCostFlow-GEACC is not efficient enough
according to our previous experiment results. Thus, we study
the scalability of Greedy-GEACC in this part. The results
are shown in Fig. 5a and 5b. Specifically, we set |V | =
100, 200, 500, 1000 respectively, and vary the size of |U |.
Since |U | is relatively large, we set max cv to 200. The other
parameters are set to default. We observe that the memory cost
of Greedy-GEACC grows linearly with the size of data and
is relatively small subtracting those consumed by input data.
Also, the time cost of Greedy-GEACC grows nearly linearly
with the size of data. The results show that Greedy-GEACC
is scalable in both time and space.

Effectiveness of approximate solutions. We next study the
effectiveness of our approximate solutions, whose results are
presented in Fig. 5c and 5d. Notice that since we need to find
the exact solutions in this part of evaluation and Prune-GEACC
is infeasible on large dataset, we set |V | = 5, |U | = 15
and cv ∼ Uniform[1, 10]. The other parameters are set to
default. In Fig. 5c, we compare the approximated MaxSums
returned by MinCostFlow-GEACC and Greedy-GEACC with
the optimal MaxSum. We first observe that when |CF | = ∅,
MinCostFlow-GEACC returns the optimal matching, which is
reasonable. We also observe that the MaxSums returned by
Greedy-GEACC are quite close to the optimal ones, indicating

that Greedy-GEACC returns quite good results in practice
though with a theoretically lower approximation ratio. Fig. 5d
shows the running time of different algorithms. The results
indicate that the two approximate solutions are very efficient
compared with the exact solution. Therefore, in overall, our
approximate solutions are both effective and efficient.

Effectiveness of pruning. We finally study the effective-
ness of our pruning technique, whose results are shown in
Fig. 6. In Fig. 6a, we present the averaged depth of recursion
when a pruning takes place in Prune-GEACC. Specifically,
we set cv ∈ [1, 10] and |V | = 5, |U | = 10 and |V | = 5,
|U | = 15 respectively, and set the other parameters to default.
The dash lines indicate the largest depths of recursions in
the two settings, which is 50 when |V | = 5, |U | = 10 and
75 when |V | = 5, |U | = 15. We observe that the averaged
depth pruned by Prune-GEACC is quite small compared with
the largest depth, indicating the effectiveness of pruning. In
Fig. 6b, we present the running time of Prune-GEACC and
that of exhaustive search without pruning, with |V | = 5,
|U | = 10 and cv ∈ [1, 10]. We can observe that Prune-GEACC
is much more efficient than exhaustive search without pruning.
In Fig. 6c, we present the number of complete searches, i.e.
the number of times when the recursion reaches the largest
depth possible and finds a complete matching. We observe
that the number of complete searches of Prune-GEACC is
much smaller than that of exhaustive search without pruning,

744



1020 50 100 200
0

500

1000

1500

2000

Max c
v

M
a

x
S

u
m

 

 

MinCostFlow−GEACC

Greedy−GEACC

Random−V

Random−U

(a) MaxSum of varying cv

2 4 6 8 10
500

1000

1500

2000

Max c
u

M
a

x
S

u
m

 

 

MinCostFlow−GEACC

Greedy−GEACC

Random−V

Random−U

(b) MaxSum of varying cu

0 0.25 0.5 0.75 1
400

600

800

1000

1200

1400

1600

1800

|CF|/(|V|(|V|−1)/2)

M
a

x
S

u
m

 

 
MinCostFlow−GEACC

Greedy−GEACC

Random−V

Random−U

(c) MaxSum of varying distribution

0 0.25 0.5 0.75 1
300

400

500

600

700

800

900

1000

|CF|/(|V|(|V|−1)/2)

M
a

x
S

u
m

 

 

MinCostFlow−GEACC

Greedy−GEACC

Random−V

Random−U

(d) MaxSum of real dataset (AKL)

1020 50 100 200
0

1

2

3

4

5

6
x 10

4

Max c
v

R
u

n
n

in
g

 t
im

e
(s

e
c
s
)

 

 

MinCostFlow−GEACC

Greedy−GEACC

Random−V

Random−U

(e) Runtime of varying cv

2 4 6 8 10
0

2

4

6

8
x 10

4

Max c
u

R
u

n
n

in
g

 t
im

e
(s

e
c
s
)

 

 

MinCostFlow−GEACC

Greedy−GEACC

Random−V

Random−U

(f) Runtime of varying cu

0 0.25 0.5 0.75 1
0

0.5

1

1.5

2

2.5
x 10

4

|CF|/(|V|(|V|−1)/2)

R
u

n
n

in
g

 t
im

e
(s

e
c
s
)

 

 

MinCostFlow−GEACC

Greedy−GEACC

Random−V

Random−U

(g) Runtime of varying distribution

0 0.25 0.5 0.75 1
0

500

1000

1500

2000

2500

|CF|/(|V|(|V|−1)/2)

R
u

n
n

in
g

 t
im

e
(s

e
c
s
)

 

 

MinCostFlow−GEACC

Greedy−GEACC

Random−V

Random−U

(h) Runtime of real dataset (AKL)

1020 50 100 200
2

4

6

8

10

12

Max c
v

M
e

m
o

ry
(M

B
)

 

 

MinCostFlow−GEACC

Greedy−GEACC

Random−V

Random−U

Input

(i) Memory of varying cv

2 4 6 8 10
2

4

6

8

10

12

Max c
u

M
e

m
o

ry
(M

B
)

 

 

MinCostFlow−GEACC

Greedy−GEACC

Random−V

Random−U

Input

(j) Memory of varying cu

0 0.25 0.5 0.75 1
2

4

6

8

10

12

|CF|/(|V|(|V|−1)/2)

M
e

m
o

ry
(M

B
)

 

 

MinCostFlow−GEACC

Greedy−GEACC

Random−V

Random−U

Input

(k) Memory of varying distribution

0 0.25 0.5 0.75 1
3

3.5

4

4.5

5

|CF|/(|V|(|V|−1)/2)

M
e

m
o

ry
(M

B
)

 

 

MinCostFlow−GEACC

Greedy−GEACC

Random−V

Random−U

Input

(l) Memory of real dataset (AKL)

Fig. 4: Results on varying capacity, distribution and on real dataset.

10K 25K 50K 75K 100K
0

200

400

600

800

1000

1200

|U|

R
u

n
n

in
g

 t
im

e
(s

e
c
s
)

 

 

|V|=100

|V|=200

|V|=500

|V|=1000

(a) Runtime of scalability test

10K 25K 50K 75K 100K
0

10

20

30

40

|U|

M
e

m
o

ry
(M

B
)

 

 
|V|=100

|V|=200

|V|=500

|V|=1000

|V|=100, input

|V|=200, input

|V|=500, input

|V|=1000, input

(b) Memory of scalability test

0 0.25 0.5 0.75 1
8

10

12

14

16

18

|CF|/(|V|(|V|−1)/2)

M
a

x
S

u
m

 

 
MinCostFlow−GEACC

Greedy−GEACC

Random−V

Random−U

Prune−GEACC

(c) MaxSum of various methods

0 0.25 0.5 0.75 1
0

5

10

15

20

|CF|/(|V|(|V|−1)/2)

R
u

n
n

in
g

 t
im

e
(s

e
c
s
)

 

 

MinCostFlow−GEACC

Greedy−GEACC

Random−V

Random−U

Prune−GEACC

(d) Runtime of various methods

Fig. 5: Study of scalability and effectiveness of approximate solutions.

indicating that many partial matchings are pruned by Prune-
GEACC during recursion. Finally, in Fig. 6d, we present the
number of times Search-GEACC is revoked, i.e. the number
of times we enter a level of recursion. We observe again that
Prune-GEACC revokes Search-GEACC much less often. In
summary, the results in this part indicate that our pruning
technique is quite effective.

Conclusion. Greedy-GEACC and MinCostFlow-GEACC
are both efficient compared with the exact solution, and they
yield acceptable approximate results. Greedy-GEACC, though
with a theoretically lower approximation ratio than that of
MinCostFlow-GEACC due to its worst-case approximation
ratio, outperforms MinCostFlow-GEACC in every aspect of
MaxSum, running time and memory cost. Finally, Greedy-

GEACC is effective and also scalable in both terms of time
and space in practice.

VI. RELATED WORK

Location and activity/event recommendation. This topic
has been studied a lot in recent years due to the rising
popularity of location-based social network (LBSN) and EBSN
[9][10][1][11][12][13][14][15]. However, such works focused
on user-oriented recommendation. In other words, they fo-
cused on mining interests of each user in certain items (lo-
cations/events) and made recommendation in a single user’s
view. Also, they did not consider conflicts and capacity of
events/users. Our work is distinct from them in that we support
event-participant arrangement in a globally systematic way
so that to satisfy the interests of most users and consider

745



0 0.25 0.5 0.75 1

20

40

60

80

100

|CF|/(|V|(|V|−1)/2)

A
v
e

ra
g

e
 P

ru
n

e
d

 D
e

p
th

 

 

Largest Depth, |V|=5, |U|=10

Avg Pruned Depth, |V|=5, |U|=10

Largest Depth, |V|=5, |U|=15

Avg Pruned Depth, |V|=5, |U|=15

(a) Averaged pruned depth

0 0.25 0.5 0.75 1
0

2

4

6

8

|CF|/(|V|(|V|−1)/2)

R
u

n
n

in
g

 t
im

e
(s

e
c
s
)

 

 

Without Pruning

Prune−GEACC

(b) Runtime

0 0.25 0.5 0.75 1
0

1

2

3

4

5
x 10

7

|CF|/(|V|(|V|−1)/2)

#
 o

f 
C

o
m

p
le

te
 S

e
a

rc
h

e
s

 

 

Without Pruning

Prune−GEACC

(c) # of complete searches

0 0.25 0.5 0.75 1
0

2

4

6

8

10

12
x 10

7

|CF|/(|V|(|V|−1)/2)

#
 o

f 
T

im
e

s
 S

e
a

rc
h

−
P

ru
n

e
 R

e
v
o

k
e

d

 

 

Without Pruning

Prune−GEACC

(d) # of times search revoked

Fig. 6: Performance of Prune-GEACC against the exact solution without pruning.

conflicts and capacity of events/users. In addition, based on
the classical influence maximization problem[16], [17] studied
the problem of discovering influential event organizers in
EBSNs. Different from their work that only considered event
organizers, our work focuses on how to make a globally
satisfactory arrangement towards both sides of event organizers
and users.

Travel route recommendation. Travel route recommenda-
tion [18][19] is a technique that recommends one or a series
of landmarks to travelers, which is related to our problem
since conflicts between landmarks should be considered. How-
ever, we differ from such works in that we study a global
arrangement problem for all events and users instead of mining
interests of users and making recommendation to a single user.

Bipartite graph matching. Assignment on bipartite graph
has been a hot research topic for decades. The branch of
bipartite matching problems most related to ours is maximum
weighted bipartite matching [2][3]. However, the original prob-
lem does not consider conflicts between nodes or capacity of
nodes. Recent works [6][20] introduced capacity to nodes, but
still they did not take conflicts of nodes into consideration.
Notice that without the conflict constraint, the maximum
weighted bipartite matching with/without capacity constraints
can be solved in polynomial time. However, our problem
differs from previous works since our problem is much harder
(NP-hard) due to the conflict constraints of nodes.

VII. CONCLUSION

In this paper, we identify a novel event-participant arrange-
ment problem called Global Event-participant Arrangement
with Conflict and Capacity (GEACC). We first analyze our
differences compared with traditional matching problems and
prove the NP-hardness of our problem. Then, we design an
exact algorithm and two approximation algorithms. The exact
algorithm is efficient for small datasets by means of a prun-
ing rule. The MinCostFlow-GEACC approximation algorithm
obtains a tight approximation ratio but is not scalable to large
dataset due to its quartic time complexity. In order to enhance
the scalability, we propose the Greedy-GEACC approximation
algorithm which runs significantly faster than MinCostFlow-
GEACC and guarantees a slightly lower approximation ratio.
We conduct extensive experiments which verify the efficiency,
effectiveness and scalability of the proposed approaches.

ACKNOWLEDGMENT

We are grateful to anonymous reviewers for their construc-
tive comments on this work. This work is supported in part

by the Hong Kong RGC Project N HKUST637/13, National
Grand Fundamental Research 973 Program of China under
Grant 2014CB340303, NSFC Grant No. 61232018, Microsoft
Research Asia Gift Grant, Google Faculty Award 2013, and
Microsoft Research Asia Fellowship 2012.

REFERENCES

[1] X. Liu, Q. He, Y. Tian, W.-C. Lee, J. McPherson, and J. Han, “Event-
based social networks: linking the online and offline social worlds,” in
KDD’12.

[2] D. B. West, Introduction to graph theory, 2001.
[3] R. E. Burkard, M. Dell’Amico, and S. Martello, Assignment Problems,

Revised Reprint, 2009.
[4] U. Pferschy and J. Schauer, “The maximum flow problem with disjunc-

tive constraints,” Journal of Combinatorial Optimization, 2013.
[5] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide

to the Theory of NP-Completeness, 1979.
[6] L. H. U, M. L. Yiu, K. Mouratidis, and N. Mamoulis, “Capacity

constrained assignment in spatial databases,” in SIGMOD’08.
[7] H. Jagadish, B. C. Ooi, K.-L. Tan, C. Yu, and R. Zhang, “idistance: An

adaptive b+-tree based indexing method for nearest neighbor search,”
TODS’05.

[8] R. Weber, H.-J. Schek, and S. Blott, “A quantitative analysis and
performance study for similarity-search methods in high-dimensional
spaces,” in VLDB’98.

[9] E. Minkov, B. Charrow, J. Ledlie, S. Teller, and T. Jaakkola, “Collab-
orative future event recommendation,” in CIKM’10.

[10] J. J. Levandoski, M. Sarwat, A. Eldawy, and M. F. Mokbel, “Lars: A
location-aware recommender system,” in ICDE’12.

[11] H. Yin, Y. Sun, B. Cui, Z. Hu, and L. Chen, “Lcars: A location-content-
aware recommender system,” in KDD’13.

[12] G. Liao, Y. Zhao, S. Xie, and P. S. Yu, “An effective latent networks
fusion based model for event recommendation in offline ephemeral
social networks,” in CIKM’13.

[13] T. De Pessemier, J. Minnaert, K. Vanhecke, S. Dooms, and L. Martens,
“Social recommendations for events,” in RecSys’13 workshop.

[14] Y.-C. Sun and C. C. Chen, “A novel social event recommendation
method based on social and collaborative friendships,” in SocInfo’13.

[15] R. Du, Z. Yu, T. Mei, Z. Wang, Z. Wang, and B. Guo, “Predicting
activity attendance in event-based social networks: Content, context and
social influence,” in UbiComp ’14.

[16] D. Kempe, J. Kleinberg, and É. Tardos, “Maximizing the spread of
influence through a social network,” in KDD’03.

[17] K. Feng, G. Cong, S. S. Bhowmick, and S. Ma, “In search of influential
event organizers in online social networks,” in SIGMOD’14.

[18] T. Kurashima, T. Iwata, G. Irie, and K. Fujimura, “Travel route
recommendation using geotags in photo sharing sites,” in CIKM’10.

[19] H.-P. Hsieh, C.-T. Li, and S.-D. Lin, “Exploiting large-scale check-in
data to recommend time-sensitive routes,” in UrbComp’12.

[20] Y. Sun, J. Huang, Y. Chen, R. Zhang, and X. Du, “Location selection
for utility maximization with capacity constraints,” in CIKM’12.

746


